Disulfide bond formation involves a quinhydrone-type charge-transfer complex.

نویسندگان

  • James Regeimbal
  • Stefan Gleiter
  • Bernard L Trumpower
  • Chang-An Yu
  • Mithun Diwakar
  • David P Ballou
  • James C A Bardwell
چکیده

The chemistry of disulfide exchange in biological systems is well studied. However, the detailed mechanism of how oxidizing equivalents are derived to form disulfide bonds in proteins is not clear. In prokaryotic organisms, it is known that DsbB delivers oxidizing equivalents through DsbA to secreted proteins. DsbB becomes reoxidized by reducing quinones that are part of the membrane-bound electron-transfer chains. It is this quinone reductase activity that links disulfide bond formation to the electron transport system. We show here that purified DsbB contains the spectral signal of a quinhydrone, a charge-transfer complex consisting of a hydroquinone and a quinone in a stacked configuration. We conclude that disulfide bond formation involves a stacked hydroquinone-benzoquinone pair that can be trapped on DsbB as a quinhydrone charge-transfer complex. Quinhydrones are known to be redox-active and are commonly used as redox standards, but, to our knowledge, have never before been directly observed in biological systems. We also show kinetically that this quinhydrone-type charge-transfer complex undergoes redox reactions consistent with its being an intermediate in the reaction mechanism of DsbB. We propose a simple model for the action of DsbB where a quinhydrone-like complex plays a crucial role as a reaction intermediate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+

The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...

متن کامل

Formation of engineered intersubunit disulfide bond in cytochrome bc1 complex disrupts electron transfer activity in the complex.

Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between tw...

متن کامل

Spectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane

The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...

متن کامل

Selective Binding of Cyclic Nanopeptide with Halides and Ion Pairs; a DFT-D3 Study

In this article, theoretical studies on the selective complexation of the halide ions (F¯, Cl¯ and Br¯) and ion pairs (Na+F¯, Na+Cl¯ and Na+Br¯) with the cyclic nano-hexapeptide (CP) composed of L-proline have been performed in the gas phase. In order to calculate the dispersion interaction energies of the CP and ions, DFT-D3 calculations at the M05-2X-D3/6-31G(d) level was employed. Based on t...

متن کامل

DFT study of the intermolecular interaction of 3,4-dinitropyrazole (DNP) and H2O

In the present work, the sensitivity to the moisture (hygroscopisity) is studied for 3,4-dinitropyrazole (DNP) as a famous energetic molecule. All of the DNP-H2O complex systems (1-3) as well as individual molecules were optimized and bond lengths, bond angles, dihedral angles, charge transfer and stability via NBO analysis, corrected interaction energies with ZPE + BSSE and hydrogen bonds anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003